已知椭圆C:
的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线
相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线
的对称点,动点M满足
. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
(Ⅰ)
;(Ⅱ)存在一个定点
且定值为
.
解析试题分析:(Ⅰ)依题意由线段F1F2为直径的圆与直线
相切,根据点到直线的距离公式得
,可得c值,再由△AF1F2为正三角形,得a、b、c间关系,求出a、b的值,即得椭圆方程及离心率;(Ⅱ)假设存在一个定点T符合题意,先求出点
关于直线
的对称点
,由题意
得
,可知动点M的轨迹,从而得解.
试题解析:解:(Ⅰ)设焦点为
,
以线段
为直径的圆与直线
相切,
,即c=2, 1分
又
为正三角形,
, 4分
椭圆C的方程为
,离心率为
. 6分
(Ⅱ)假设存在一个定点T符合题意,设动点
,由点
得
点
关于直线
的对称点
, 7分
由
得
,
两边平方整理得
, 10分
即动点M的轨迹是以点
为圆心,
长为半径的圆,
存在一个定点
且定值为
. 12分
考点:1、椭圆方程及性质;2、点到直线的距离公式;3、点关于直线的对称点的求法;4、两点间距离公式;5、圆的轨迹方程.
科目:高中数学 来源: 题型:解答题
已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的离心率
,
是其左右焦点,点
是直线
(其中
)上一点,且直线
的倾斜角为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
是椭圆
上两点,满足
,求
(
为坐标原点)面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点
以及椭圆
的上、下焦点及左、右顶点均在圆
上.
(1)求抛物线
和椭圆
的标准方程;
(2)过点
的直线交抛物线
于
两不同点,交
轴于点
,已知
,则![]()
是否为定值?若是,求出其值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设抛物线C:
的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若
,求线段
中点M的轨迹方程;
(2)若直线AB的方向向量为
,当焦点为
时,求
的面积;
(3)若M是抛物线C准线上的点,求证:直线
的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为
,其离心率为
,经过椭圆焦点且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:
与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
与直线
相交于
两点.
(1)若椭圆的半焦距
,直线
与
围成的矩形
的面积为8,
求椭圆的方程;
(2)若
(
为坐标原点),求证:
;
(3)在(2)的条件下,若椭圆的离心率
满足
,求椭圆长轴长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形
中,
分别为四边的中点,且都在坐标轴上,设
,
.![]()
(Ⅰ)求直线
与
的交点
的轨迹
的方程;
(Ⅱ)过圆![]()
上一点
作圆的切线与轨迹
交于
两点,若
,试求出
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com