精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+
1
2
ax2-bx(a,b∈R)

(1)若x1=-2和x2=4为函数f(x)的两个极值点,求函数f(x)的表达式;
(2)若f(x)在区间[-1,3]上是单调递减函数,求a-b的最大值.
分析:(1)求导函数,利用x1=-2和x2=4为函数f(x)的两个极值点,可得f′(-2)=0,f′(4)=0,建立方程,即可求得函数f(x)的表达式;
(2)f(x)在区间[-1,3]上是单调递减函数,可知x2+ax-b≤0在区间[-1,3]上恒成立,从而可得不等式,再将a-b用结论线性表示,即可求得结论.
解答:解:(1)求导函数,可得f′(x)=x2+ax-b
∵x1=-2和x2=4为函数f(x)的两个极值点,
∴-2+4=-a,(-2)×4=-b
∴a=-2,b=8
f(x)=
1
3
x3-x2-8x
,f′(x)=x2-2x-8;
(2)由f(x)在区间[-1,3]上是单调递减函数,可知x2+ax-b≤0在区间[-1,3]上恒成立
1-a-b≤0
9+3a-b≤0
,∴
a+b≥1
3a-b≤-9

令a-b=m(a+b)+n(3a-b),则
m+3n=1
m-n=-1
,∴
m=-
1
2
n=
1
2

-
1
2
(a+b)+
1
2
(3a-b)≤-5
∴a-b≤-5
∴a-b的最大值为-5.
点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案