精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标.
分析:(1)由题意可得4+
p
2
=5,可求p,进而可求抛物线方程
(2)由题意可求点A,B,M,F,进而可求直线FA的斜率kFA,结合MN⊥FA,可求kMN,然后写出FA的方程,MN的方程,联立两直线方程可求N
解答:解:(1)抛物线y2=2px的准线x=-
p
2

于是,4+
p
2
=5,
∴p=2.
∴抛物线方程为y2=4x.
(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2).
又∵F(1,0),
∴kFA=
4
3

又MN⊥FA,
∴kMN=-
3
4

则FA的方程为y=
4
3
(x-1),
MN的方程为y-2=-
3
4
x,
解方程组
y-2=-
3
4
x
y=
4
3
(x-1)
得 
x=
8
5
y=
4
5

∴N(
8
5
4
5
)
点评:本题主要考查了抛物线的性质在求解抛物线的方程中的应用,直线的位置关系的应用及两条直线相交关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案