【题目】已知
,
是椭圆
的左右焦点,椭圆与
轴正半轴交于点
,直线
的斜率为
,且
到直线
的距离为
.
(1)求椭圆
的方程;
(2)
为椭圆
上任意一点,过
,
分别作直线
,
,且
与
相交于
轴上方一点
,当
时,求
,
两点间距离的最大值.
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,
(
为常数)对于任意的
恒成立.
(1)若
,求
的值;
(2)证明:数列
是等差数列;
(3)若
,关于
的不等式
有且仅有两个不同的整数解,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C
上,过M作x轴的垂线,垂足为N,点P满足
.
(1)求点P的轨迹方程;
(2)设点
在直线
上,且
.证明:过点P且垂直于OQ的直线
过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设动点
在圆
上,动线段
的中点
的轨迹为
,
与直线
交点为
,且直角坐标系中,
点的横坐标大于
点的横坐标,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2
,点F为AB的中点,点E为线段A1C1上的动点.
![]()
(1)求证:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面体A1B1EF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,平面
平面
,
和
均是等腰直角三角形,
,
,
、
分别为
、
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
;
(Ⅲ)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,动直线l与椭圆E交于不同的两点
,
,且△AOB的面积为1,其中O为坐标原点.
(1)证明:
为定值;
(2)设线段AB的中点为M,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒属于
属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的
,
,人体肺部结构中包含
,
的结构,新型冠状病毒肺炎是由它们复合而成的,表现为
.则下列结论正确的是( )
A.若
,则
为周期函数
B.对于
,
的最小值为![]()
C.若
在区间
上是增函数,则![]()
D.若
,
,满足
,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为
;乙第一次射击的命中率为
,若第一次未射中,则乙进行第二次射击,射击的命中率为
,如果又未中,则乙进行第三次射击,射击的命中率为
.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为_____,乙射中的概率为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com