精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)满足f(1)=1且f(x)的导函数f′(x)>
1
2
,则满足2f(x)<x+1的x的集合为(  )
分析:令F(x)=2f(x)-x,然后根据导数符号研究函数的单调性,从而得到变量x的不等式,解之即可.
解答:解:令F(x)=2f(x)-x
则F′(x)=2f′(x)-1>0
∴F(x)在R上单调递增
∵F(1)=2f(1)-1=2-1=1,2f(x)<x+1
∴F(x)=2f(x)-x<1=F(1)
即x<1
故满足2f(x)<x+1的x的集合为为{x|x<1}
故选B.
点评:本题主要考查了导数的运算,以及构造法的应用,解题的关键是令F(x)=2f(x)-x后利用单调性解不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函数
(1)a+b=
3
3

(2)若函数g(x)=f(
2x+1
)+f(k-x)
有两个零点,则k的取值范围是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求f(x)的解析式;
(2)用定义证明f(x)为R上的减函数;
(3)若对任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+12x+1+a
是奇函数,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数.
(Ⅰ)求实数a值;
(Ⅱ)判断并证明该函数在定义域R上的单调性.

查看答案和解析>>

同步练习册答案