精英家教网 > 高中数学 > 题目详情

设集合数学公式
(1)对于给定的整数m,n,如果满足数学公式,那么集合A中有几个元素?
(2)如果整数m,n最大公约数为1,问是否存在x,使得数学公式都属于A,如果存在,请写出一个,如果不存在,请说明理由.

解:(1)若n=0,则满足0<m<1的整数m不存在,此时为空集
若n≠0,则,对于任意给定的整数n,只有一个整数m符合条件,此时为单元集
(2)设x∈A,则,则

如果,则m2-2n2是1的公约数,即m2-2n2=±1,不妨取m=3,b=2,即
分析:(1)若n=0,则满足0<m<1的整数m不存在,此时为空集,没有元素,若n≠0,求出m的范围,对于任意给定的整数n,找出符合条件的m,从而确定集合中元素的个数;
(2)根据都属于A建立等式关系,化成集合A中元素的形式,再根据整数m,n最大公约数为1,可得m2-2n2是1的公约数,即m2-2n2=±1,然后取一m和n使得满足条件即可.
点评:本题主要考查了集合中元素的个数,同时考查了最大公约数的概念,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设M是含有n个正整数的集合,如果M中没有一个元素是M中另外两个不同元素之和,则称集合M是n级好集合,
(Ⅰ)判断集合{1,3,4,7,9}是否是5级好集合,并写出另外一个5级好集合,满足其最大元素不超过9;
(Ⅱ)给定正整数a,设集合M={a,a+1,a+2,…a+k}是好集合,其中k为正整数,试求k的最大值,并说明理由;
(Ⅲ)对于任意n级好集合M,求集合M中最大元素的最小值(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(附加题)设集合A={x|x=m+n
2
,其中m,n∈Z}

(1)对于给定的整数m,n,如果满足0<m+n
2
<1
,那么集合A中有几个元素?
(2)如果整数m,n最大公约数为1,问是否存在x,使得x和
1
x
都属于A,如果存在,请写出一个,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(附加题)设集合A={x|x=m+n
2
,其中m,n∈Z}

(1)对于给定的整数m,n,如果满足0<m+n
2
<1
,那么集合A中有几个元素?
(2)如果整数m,n最大公约数为1,问是否存在x,使得x和
1
x
都属于A,如果存在,请写出一个,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案