定义在
上的函数
对任意
都有
(
为常数).
(1)判断
为何值时
为奇函数,并证明;
(2)设
,
是
上的增函数,且
,若不等式
对任意
恒成立,求实数
的取值范围.
(1)
,证明过程详见解析;(2)
.
解析试题分析:本题主要考查抽象函数奇偶性的判断和利用函数单调性解不等式.考查学生的分析问题解决问题的能力.考查转化思想和分类讨论思想.第一问,用赋值法证明函数的奇偶性;第二问,利用单调性解不等式,转化成恒成立问题,再利用二次函数的性质求
的取值范围.
试题解析:(Ⅰ)若
在
上为奇函数,则
, 1分
令
,则
,∴
. 2分
证明:由
,令
,则
,
又
,则有
.即
对任意
成立,所以
是奇函数.
6分
(Ⅱ)
7分
∴
对任意
恒成立.
又
是
上的增函数,∴
对任意
恒成立, 9分
即
对任意
恒成立,
当
时显然成立;
当
时,由
得
.
所以实数m的取值范围是
. 13分
考点:1.抽象函数的奇偶性的判断;2.恒成立问题.
科目:高中数学 来源: 题型:解答题
已知二次函数
.
(1)若对任意
、
,且
,都有
,求证:关于
的方程![]()
有两个不相等的实数根且必有一个根属于
;
(2)若关于
的方程
在
上的根为
,且
,设函数
的图象的对称轴方程为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品
千件并全部销售完,每千件的销售收入为
万元,且![]()
(Ⅰ)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”;若
在
上为增函数,则称
为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为
,所有“二阶比增函数”组成的集合记为
.
(Ⅰ)已知函数
,若
且
,求实数
的取值范围;
(Ⅱ)已知
,
且
的部分函数值由下表给出,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com