精英家教网 > 高中数学 > 题目详情
(2013•兰州一模)选修4-5:《不等式选讲》
已知函数f(x)=|x-2|-|x-5|.
(I)证明:-3≤f(x)≤3;
(Ⅱ)求不等式f(x)≥x2-8x+15的解集.
分析:(I)分当x≤2时、当2<x<5时、当x≥5 时三种情况,分别化简函数f(x)的解析式,求出函数f(x)的值域,可得-3≤f(x)≤3成立.
(II)分当x≤2时、当2<x<5时、当x≥5时三种情况,分别解出不等式f(x))≥x2-8x-8x+15的解集,再取并集,即得所求.
解答:解:(I)证明:当x≤2时,f(x)=2-x-(5-x)=-3;
当2<x<5时,f(x)=x-2-(5-x)=2x-7,所以-3<f(x)<3;
当x≥5 时,f(x)=x-2-(x-5)=3.
所以-3≤f(x)≤3.…(5分)
(II)由(I)可知,当x≤2时,f(x))≥x2-8x-8x+15,等价于-3≥x2-8x+15,
等价于(x-4)2+2≤0,解集为∅.
当2<x<5时,f(x)≥x2-8x-8x+15,等价于2x-7≥x2-8x-8x+15,即 x2-10x+22≤0,
解得 5-
3
≤x≤5+
3
,故不等式的解集为{x|5-
3
≤x<5}.
当x≥5时,f(x)≥x2-8x+15,等价于x2-8x+12≤0,解得2≤x≤6,
∴不等式的解集为 {x|5≤x≤6}.
综上,不等式的解集为{x|5-
3
≤x≤6}.…(10分)
点评:本题主要考查绝对值不等式、一元二次不等式的解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•兰州一模)在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cosα
y=sinα

(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
)
,判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)选修4-5:不等式选讲
已知函数f(x)=|x-2|-|x-5|.
(1)证明:-3≤f(x)≤3;
(2)求不等式f(x)≥x2-8x+15的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)下列命题中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)设全集U={1,2,3,4,5},已知U的子集M、N满足集M={1,4},M∩N={1},N∩(?UM)={3,5},则N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)曲线y=x3+11在点P(1,12)处的切线与两坐标轴围成三角形的面积是(  )

查看答案和解析>>

同步练习册答案