精英家教网 > 高中数学 > 题目详情
(2013•永州一模)永州市举办科技创新大赛,某县有20件科技创新作品参赛,大赛组委会对这20件作品分别从“创新性”和“实用性”两个方面进行评分,每个方面评分均按等级采用3分制(最低1分,最高3分),若设“创新性”得分为x,“实用性”得分为y,得到统计结果如下表,若从这20件产品中随机抽取1件.
x
作品数
y
     创  新  性
1分 2分 3分


1分 2 0 2
2分 1 4 1
3分 2 2 6
(1)求事件A:“x≥2且y≤2”的概率;
(2)设ξ为抽中作品的两项得分之和,求ξ的数学期望.
分析:(1)确定事件A:“x≥2且y≤2”的作品数量,即可求得概率;
(2)方法一:分别求出“创新性”、“实用性”得分的分布列与期望,即可求得ξ的数学期望;
方法二:确定作品的总得分ξ的可能取值,求出其分布列,即可求得ξ的数学期望.
解答:解:(1)从表中可以看出,事件A:“x≥2且y≤2”的作品数量为7件,
故“x≥2且y≤2”的概率为
7
20
=0.35
.                      …(5分)
(2)方法一:由表可知“创新性”得分y有(1分)、(2分)、(3分)三个等级,每个等级分别有5件,6件,9件,“创新性”得分x的分布列为:
x 1 2 3
p
1
4
3
10
9
20
则“创新性”得分的数学期望为Ex=
1
4
+2×
3
10
+3×
9
20
=
11
5
=2.2
;                         …(8分)
“实用性”得分y有(1分)、(2分)、(3分)三个等级,每个等级分别有4件,6件,10件,
“实用性”得分y的分布列为:
y 1 2 3
p
1
5
3
10
1
2
故“实用性”得分的数学期望为Ey=
1
5
+2×
3
10
+3×
1
2
=
23
10
=2.3
…(10分)
所以ξ数学期望Eξ=E(x+y)=Ex+Ey=2.2+2.3=4.5         …(12分)
方法二:作品的总得分ξ的可能取值为(2分),(3分),(4分),(5分),(6分),
由表中可知对应的作品数量分别为2件,1件,8件,3件,6件,…(8分)
则作品的总得分ξ的分布列为:…(10分)
ξ 2 3 4 5 6
P
1
10
1
20
2
5
3
20
3
10
所以ξ数学期望为Eξ=
1
10
+3×
1
20
+4×
2
5
+5×
3
20
+6×
3
10
=
9
2
=4.5
…(12分)
点评:本题考查概率的计算,考查离散型随机变量的分布列与数学期望,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•永州一模)已知函数f(x)=mlnx+
1
x
,(其中m为常数)
(1)试讨论f(x)在区间(0,+∞)上的单调性;
(2)令函数h(x)=f(x)+
1
m
lnx
-x.当m∈[2,+∞)时,曲线y=h(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得过P、Q点处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足v(x)=40-
k
250-x
.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ)当0<x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到个位,参考数据
5
≈2.236

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知A,B是圆C(为圆心)上的两点,|
AB
|=2,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)设集合A={x|-1<x<2},B={x|x2≤1},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)“x≠3”是“|x-3|>0”的(  )

查看答案和解析>>

同步练习册答案