精英家教网 > 高中数学 > 题目详情

如右图,M(-2,0)和N(2,0)是平面上的两点,动点P满足: w.w.w.k.s.5.u.c.o.m          

(1).求点P的轨迹方程;

(2).若点P到点M距离是到点N距离的2倍,求点P横坐标.

解析:(Ⅰ)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.

因此半焦距c=2,长半轴a=3,从而短半轴b=

所以椭圆的方程为

(2) a=3 ,c=2  e=  由

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,右焦点F(1,0).过点F作斜率为k(k≠0)的直线l,交椭圆G于A、B两点,M(2,0)是一个定点.如图所示,连AM、BM,分别交椭圆G于C、D两点(不同于A、B),记直线CD的斜率为k1
(Ⅰ)求椭圆G的方程;
(Ⅱ)在直线l的斜率k变化的过程中,是否存在一个常数λ,使得k1=λk恒成立?若存在,求出这个常数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C:y=2x(0≤x≤2)两端分别为M、N,且NA⊥x轴于点A.把线段OA分成n等份,以每一段为边作矩形,使与x轴平行的边一个端点在C上,另一端点在C的下方(如右图),设这n个矩形的面积之和为Sn,则
lim
n→∞
[(2n-3)(
n16
-1)Sn]
=
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上高县模拟)如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S,T,而与抛物线交于C,D两点,且
|CD|
|ST|
=2
2

(1)求椭圆E的方程;
(2)若过m(2,0)的直线与椭圆E相交于两点A和B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

同步练习册答案