精英家教网 > 高中数学 > 题目详情

 如图,四棱锥的底面是矩形,⊥平面.

(1)求证:⊥平面

(2)求二面角余弦值的大小;

(3)求点到平面的距离.

 

【答案】

(1) 略(2)(3)

【解析】

试题分析:(1)证明:∵底面是矩形,

∴底面是正方形,∴.

⊥平面平面,∴.

P平面,∴⊥平面.

(2)解:∵底面是正方形,∴.

又∵⊥平面,∴.

P平面,∴⊥平面,

为二面角的平面角.

中,即求二面角余弦值为

(3)解:设点到平面的距离为,所以,

所以,即,解得

即点到平面的距离为

考点:本小题主要考查线面垂直的证明、二面角的求法和等体积法求高,考查了学生的空间想象能力、逻辑推理能力和运算求解能力.

点评:证明线面、面面间的位置关系时,要紧扣判定定理,要注意灵活运用性质定理和判定定理,把定理要求的条件一一列举出来,缺一不可.求二面角时,要先证后求,不能只求不证.求点到平面的距离时,等体积法是常用的方法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年朝阳区二模文)(13分)

  如图,四棱锥的底面是矩形,底面边的中点,与平面所成的角为,且.

(Ⅰ) 求证:平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年山东实验中学诊断三理)(13分)如图:四棱锥的底面是提醒,腰平分且与垂直,侧面都垂直于底面,平面与底面成60°角

(1)求证:

(2)求二面角的大小

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三第八次月考文科数学试卷 题型:解答题

如图,四棱锥的底面是平行四边形,平面,,,

上的点,且.     

(Ⅰ)求证:

(Ⅱ)求的值,使平面

(Ⅲ)当时,求三棱锥与四棱锥的体积之比.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三上学期摸底理科数学 题型:解答题

((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面分别是棱的中点.

   (1)求证:;   (2) 求直线与平面所成的角的正切值

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题

(本小题满分12 分)

如图,四棱锥的底面是边长为的菱形,

平面的中点,O为底面对角线的交点;

(1)求证:平面平面; 

(2)求二面角的正切值。

 

查看答案和解析>>

同步练习册答案