精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且f(1)=0,则不等式f(2x-1)>0的解集为
(0,
1
2
)∪(1,+∞)
(0,
1
2
)∪(1,+∞)
分析:根据函数的奇偶性、单调性可作出函数的草图及函数所的零点,根据图象可对不等式等价转化为具体不等式,解出即可.
解答:解:因为f(x)在(0,+∞)上单调递增且为奇函数,
所以f(x)在(-∞,0)上也单调递增,
f(-1)=-f(1)=0,作出草图如下所示:
由图象知,f(2x-1)>0等价于-1<2x-1<0或2x-1>1,
解得0<x<
1
2
或x>1,
所以不等式的解集为(0,
1
2
)∪(1,+∞),
故答案为:(0,
1
2
)∪(1,+∞).
点评:本题考查函数的奇偶性、单调性的综合及其应用,考查不等式的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案