精英家教网 > 高中数学 > 题目详情

 (本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时?平面BEF⊥平面ACD. 

 

【答案】

(1)证明:见解析;(2)当 λ=时,平面BEF⊥平面ACD.

【解析】本题考查的知识点是平面与平面垂直的判定,用空间向量求平面间的夹角,其中在(2)中,构造适当的空间坐标系,然后结合向量法求二面角的方法,构造一个关于λ的方程,是解答本题的关键.

1)由已知中,∠BCD=90°,AB⊥平面BCD,我们易得到CD⊥平面ABC,又由E、F分别是AC、AD上的动点,故EF∥CD即EF⊥平面ABC,再由面面垂直的判定定理,即可得到答案.

(2)过点C作CZ∥AB,以C为原点,建立空间直角坐标系C-xyz.分别求出各顶点的坐标,并根据ABCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,分别求出平面BEF的法向量和平面BCD的法向量,然后根据平面BEF与平面BCD所成的二面角的大小为60°,代入向量夹角公式,构造一个关于λ的方程,解方程即可得到平面BEF与平面BCD所成的二面角的大小为60°时λ的值.

(1)证明:∵ AB⊥平面BCD,∴ AB⊥CD.

∵ CD⊥BC,且AB∩BC=B,∴ CD⊥平面ABC.

=λ(0<λ<1),

不论λ为何值,恒有EF∥CD, ∴ EF⊥平面ABC.

EF 平面BEF,  ∴不论λ为何值总有平面BEF⊥平面ABC. ----------------6分

(2)解:由(1)知,BE⊥EF,又平面BEF⊥平面ACD,∴ BE⊥平面ACD.

∴ BE⊥AC.∵ BC=CD=1,∠BCD=90°,∠ADB=60°,∴ BD=,AB=

AC=.由△ABC∽△AEB,有AB2=AE·AC,从而AE=.∴ =

故当 λ=时,平面BEF⊥平面ACD.-----------------------12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案