精英家教网 > 高中数学 > 题目详情
函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为(  )
A.n(n∈Z)B.2n(n∈Z)
C.2n或2n-
1
4
(n∈Z)
D.n或n-
1
4
(n∈Z)
因为函数f(x)是定义在R上的偶函数,设x∈[-1,0],则-x∈[0,1],于是f(x)=(-x)2=x2
设x∈[1,2],则(x-2)∈[-1,0].于是,f(x)=f(x-2)=(x-2)2
①当a=0时,联立
y=x
y=x2
,解之得
x=0
y=0
x=1
y=1
,即当a=0时,即直线y=x+a与函数y=f(x)的图象有两个不同的公共点.
②当-2<a<0时,只有当直线y=x+a与函数f(x)=x2在区间[0,1)上相切,且与函数f(x)=(x-2)2 在x∈[1,2)上仅有一个交点时才满足条件.由f(x)=2x=1,解得x=
1
2

∴y=(
1
2
)2
=
1
4
,故其切点为(
1
2
1
4
)

a=
1
4
-
1
2
=-
1
4

y=x-
1
4
y=(x-2)2
(1≤x<2)解之得
x=
5-2
2
2
y=
9-4
2
4

综上①②可知:直线y=x+a与函数y=f(x)在区间[0,2)上的图象有两个不同的公共点时的a的值为0或-
1
4

又函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x),实数a的值为2n或2n-
1
4
,(n∈Z).
故应选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x∈(-
3
2
,0)时
,f(x)=log2(-3x+1),则f(2011)=(  )
A、-2
B、2
C、4
D、log27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在N*的函数,且满足f(f(k))=3k,f(1)=2,设an=f(3n-1),b1=1,bn-log3f(an)=b1-log3f(a1).
(I)求bn的表达式;
(II)求证:
b1
f(a1)
+
b2
f(a2) 
+…+
bn
f(an)
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(1-2x)<0,则实数x的取值范围为
(0,1]
(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•临沂二模)已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈[-e,0)时,f(x)=ax-ln(-x),(a<0,a∈R)
(I)求f(x)的解析式;
(Ⅱ)是否存在实数a,使得当x∈(0,e]时f(x)的最大值是-3,如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

注:此题选A题考生做①②小题,选B题考生做①③小题.
已知函数f(x)是定义在R上的奇函数,且当x≥0时有f(x)=
4xx+4

①求f(x)的解析式;
②(选A题考生做)求f(x)的值域;
③(选B题考生做)若f(2m+1)+f(m2-2m-4)>0,求m的取值范围.

查看答案和解析>>

同步练习册答案