精英家教网 > 高中数学 > 题目详情
精英家教网设四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PB∥面ACE
(2)求证:直线AE⊥面PCD
(3)求直线AC与平面PCD所成角的大小.
分析:(1)连接BD交AC于点O,连接OE,由三角形中位线定理可得OE∥PB,由直线与平面平行的判定定理可得直线PB∥面ACE
(2)由已知中PA⊥面ABCD,底面ABCD是边长为2的正方形,可得PA⊥CD,CD⊥AD,由线面垂直的判定定理可得CD⊥面PAD,根据线面垂直的可得CD⊥AE,结合已知中PA=AB=AD,E为PD的中点,我们可得AE⊥PD,由线面垂直的判定定理,即可得到答案.
(3)由(2)的结论可得:AC在面PCD内的射影为CE,则直线AC与平面PCD所成角为∠ACE,解三角形ACE即可求出直线AC与平面PCD所成角的大小.
解答:精英家教网解:(1)连接BD交AC于点O,连接OE
易知:O为BD的中点
而E为PD的中点
∴OE∥PB
又PB不在平面ACE内,OE在平面ACE内
∴PB∥平面ACE         …(4分)
(2)证明:∵PA⊥面ABCD
∴PA⊥CD
又正方形ABCD
∴CD⊥AD
∴CD⊥面PAD故:CD⊥AE
∵在直角三角形PAD中,PA=AB=AD,E为PD的中点∴AE⊥PD
∴AE⊥面PCD…(8分)
(3)由(2)知:AC在面PCD内的射影为CE
故直线AC与平面PCD所成角为∠ACE        …(10分)
由于PA=AB=AD=2,在直角三角形ACF中,易知:AE=
2
,AC=2
2

∴sin∠ACE=
AE
AC
=
1
2
∴∠ACE=30°
即:直线AC与平面PCD所成角的大小为30°     …(12分)
点评:本题考查的知识点是直线与平面平行的判定,直线与平面垂直的判定,直线与平面所成的角,其中(1)的关键是证得OE∥PB,(2)的关键是证得CD⊥AE,AE⊥PD,(3)的关键是证得直线AC与平面PCD所成角为∠ACE.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PB∥面ACE
(2)求证:直线AE⊥面PCD
(3)若二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设四棱锥P-ABCD的底面不是平行四边形,用平面 α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面α(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)设四棱锥P-ABCD的底面ABCD是单位正方形,PB⊥底面ABCD且PB=
3
,记∠APD=θ,sinθ=(  )

查看答案和解析>>

科目:高中数学 来源:2014届内蒙呼伦贝尔牙克石林业一中高一下期末数学试卷(解析版) 题型:选择题

设四棱锥P-ABCD的底面不是平行四边形, 用平面α去截此四棱锥(如右图), 使得截面四边形是平行四边形, 则这样的平面α 有(      )

A.不存在       B.只有1个

C.恰有4个      D.有无数多个

 

查看答案和解析>>

同步练习册答案