精英家教网 > 高中数学 > 题目详情
已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通项公式.
(Ⅱ)令Cn=Sncos(anπ)(n∈N+),求{cn}的前n项和Tn
分析:(Ⅰ)根据题意,设{an}的公差为d,{bn}的公比为q,由已知条件a2b2=12,S3+b2=20,可得关于d、q的方程组,求解可得d、q的值,结合等比等差数列的通项公式,可得答案;
(Ⅱ)由(Ⅰ)的结论,可得Cn的表达式,即cn=Sncos3nπ=
Sn=
3
2
n2+
3
2
n
n是偶
-Sn=-
3
2
n2-
3
2
n
n是奇
,分n为奇数与偶数两种情况讨论,计算可得答案.
解答:解:(Ⅰ)设{an}的公差为d,{bn}的公比为q,
则a2b2=(3+d)q=12,①
S3+b2=3a2+b2=3(3+d)+q=9+3d+q=20,即3d+q=11,
变形可得q=11-3d,②
代入①可得:(3+d)(11-d)=33+2d-3d2=12,
3d2-2d-21=0,
(3d+7)(d-3)=0,
又由{an}是单调递增的等差数列,有d>0.
则d=3,
q=11-3d=2,
an=3+(n-1)×3=3n,bn=2n-1…(6分)
(Ⅱ) cn=Sncos3nπ=
Sn=
3
2
n2+
3
2
n
n是偶
-Sn=-
3
2
n2-
3
2
n
n是奇
…(9分)
当n是偶数,Tn=c1+c2+c3+…+cn=-S1+S2-S3+S4-…-Sn-1+Sn
=a2+a4+a6+…+an=6+12+18+…+3n=
3n(n+2)
4
…(10分)
当n是奇数,Tn=Tn-1-Sn=
3(n-1)(n+1)
4
-
3
2
n2-
3
2
n=-
3
4
(n+1)2

综上可得Tn=
3n(n+2)
4
n是偶
-
3
4
(n+1)2
n是奇
…(13分)
点评:本题综合考查等比、等差数列,涉及数列的求和;解(Ⅱ)题的关键在于分析发现Tn与Cn的关系,转化来求出答案,注意要分n为奇数与偶数2种情况进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通项公式.
(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn;数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(1)求{an}和{bn}的通项公式;
(2)令cn=Sncos(
an3
π)(n∈N+)
,求{cn}的前20项和T20

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省部分重点中学高三(上)起点数学试卷(文理合卷)(解析版) 题型:解答题

(文科)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通项公式.
(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省部分重点中学高三(上)起点数学试卷(文理合卷)(解析版) 题型:解答题

已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通项公式.
(Ⅱ)令Cn=Sncos(anπ)(n∈N+),求{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案