【题目】已知函数
的图象经过点(1,3),并且g(x)=xf(x)是偶函数.
(1)求实数a、b的值;
(2)用定义证明:函数g(x)在区间(1,+∞)上是增函数.
【答案】解:(1)∵函数g(x)=x
是偶函数,则g(﹣x)=g(x).
∴
恒成立,即x﹣b=x+b恒成立,
∴b=0.
又函数f(x)的图象经过点(1,3),
∴f(1)=3,即1+a=3,
∴a=2.
(2)由(1)知:g(x)=xf(x)=2x2+1.
设x2>x1>1,
则
-1=2(x2﹣x1)(x2+x1).
∵x2>x1>1,∴(x2﹣x1)(x2+x1)>0
∴g(x2)>g(x1),
∴函数g(x)在区间(1,+∞)上是增函数.
【解析】(1)根据g(﹣x)=g(x)恒成立得出b的值,将(1,3)代入f(x)解出a;
(2)设x2>x1>1,化简g(x2)﹣g(x1)并判断符号得出g(x2)与g(x1)的大小关系.
【考点精析】关于本题考查的函数单调性的判断方法和函数奇偶性的性质,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
(
),
为
上一点,以
为边作等边三角形
,且
、
、
三点按逆时针方向排列.
(Ⅰ)当点
在
上运动时,求点
运动轨迹的直角坐标方程;
(Ⅱ)若曲线
:
,经过伸缩变换
得到曲线
,试判断点
的轨迹与曲线
是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,底面
是直角梯形,
,
,
,
是
的中点.
(1)求证:平面
平面
;
(2)若二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:
![]()
某校研究性学习小组,从汽车市场上随机选取了
辆纯电动乘用车,根据其续驶里程
(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
![]()
(1)求
的值;
(2)若从这
辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为
(单位:万元),求
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若任意
,不等式
恒成立,求实数
的取值范围;
(2)求证:对任意
,
,都有
成立;
(3)对于给定的正数
,有一个最大的正数
,使得整个区间
上,不等式
恒成立,求出
的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是正四棱柱
的一个截面,此截面与棱
交于点
,
,其中
分别为棱
上一点.
(1)证明:平面
平面
;
(2)
为线段
上一点,若四面体
与四棱锥
的体积相等,求
的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题:
①函数g(x)=f(x)+f(﹣x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2﹣x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1 , x2∈R,且x1≠x2 , 若
>0恒成立,则f(x)为R上的增函数,
其中所有正确命题的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com