【题目】某工厂要建造一个长方体无盖贮水池,其容积为
,深3m.如果池底每平方米的造价为200元,池壁每平方米的造价为150元,怎样设计水池能使总造价最低?最低总造价是多少?
科目:高中数学 来源: 题型:
【题目】如图:四棱锥P-ABCD底面为一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中点。
(Ⅰ)求证:平面PDC⊥平面PAD;
(Ⅱ)求证:BF∥平面PAD。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:
| 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
| 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根据上表的数据得到如下的散点图.
![]()
(1)根据上表中的样本数据及其散点图:
(i)求
;
(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.
(2)若
关于
的线性回归方程为
,求
的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.
附:参考数据:img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
,
,
,
,
,
参考公式:相关系数
![]()
回归方程
中斜率和截距的最小二乘估计公式分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
过点
,
,
为椭圆
的左、右焦点,离心率为
,圆
的直径为
.
(1)求椭圆
及圆
的方程;
(2)设直线
与圆
相切于第一象限内的点
.
①若直线
与椭圆
有且只有一个公共点,求点
的坐标;
②若直线
与椭圆
交于
,
两点,且
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业购买某种仪器,在仪器使用期间可能出现故障,需要请销售仪器的企业派工程师进行维修,因为考虑到人力、成本等多方面的原因,销售仪器的企业提供以下购买仪器维修服务的条件:在购买仪器时,可以直接购买仪器维修服务,维修一次1000元;在仪器使用期间,如果维修服务次数不够再次购买,则需要每次1500元..现需决策在购买仪器的同时购买几次仪器维修服务,为此搜集并整理了500台这种机器在使用期内需要维修的次数,得到如下表格:
维修次数 | 5 | 6 | 7 | 8 | 9 |
频数(台) | 50 | 100 | 150 | 100 | 100 |
记
表示一台仪器使用期内维修的次数,
表示一台仪器使用期内维修所需要的费用,
表示购买仪器的同时购买的维修服务的次数.
(1)若
,求
与
的函数关系式;
(2)以这500台仪器使用期内维修次数的频率代替一台仪器维修次数发生的概率,求
的概率.
(3)假设购买这500台仪器的同时每台都购买7次维修服务,或每台都购买8次维修服务,请分别计算这500台仪器在购买维修服务所需要费用的平均数,以此为决策依据,判断购买7次还是8次维修服务?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是曲线
:
上的动点,延长
(
是坐标原点)到
,使得
,点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若点
,
分别是曲线
的左、右焦点,求
的取值范围;
(3)过点
且不垂直
轴的直线
与曲线
交于
,
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
是边长为1的等边三角形,M为线段
中点,
.
![]()
(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点N,使得直线
平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com