精英家教网 > 高中数学 > 题目详情

(Ⅰ)(坐标系与 参数方程)直线与圆相交的弦长为      

(Ⅱ)(不等式选讲)设函数 >1),且的最小值为,若,则的取值范围        

 

【答案】

,3≤x≤8

【解析】

试题分析:,配方得,

所以,直线与圆相交的弦长为

考点:极坐标方程与普通方程的互化,直线与圆的位置关系。

点评:中档题,极坐标方程化为普通方程,常用的公式有,等。涉及圆的弦长问题,利用几何法往往形象直观,易于理解。

试题分析:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,f(x)的最小值为3,∴|a-4|=3,

解得,a=1或7,又a>1,∴a=7,

即f(x)=|x-4|+|x-7|≤5,

若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;

若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;

若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;

综上3≤x≤8,

故答案为:3≤x≤8.

考点:绝对值不等式的性质,绝对值的几何意义,绝对值不等式的解法。

点评:中档题,求此类函数的最值问题,可以利用绝对值不等式的性质,也可以利用绝对值的几何意义。解绝对值不等式,通常利用“分段讨论法”,也可以利用绝对值的几何意义。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选做题)选修4-4:坐标系与参数方程
在极坐标系中,直线l的极坐标方程为θ=
π
3
(ρ∈R)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=1+2cosα
y=2sinα.
(α为参数),若直线l与曲线C交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

[选修4-4:坐标系与参数方程]
在直角坐标系xoy中,直线l的参数方程为
x=
1
2
t
y=
2
2
+
3
2
t
(t为参数),若以直角坐标系xoy 的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-
π
4
).直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分.本题共5分.
(1)(坐标系与参数方程选做题)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为
x2+y2-4x-2y=0
x2+y2-4x-2y=0

(2)(不等式选择题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科做②;理科从①②两小题中任意选作一题)
①(坐标系与参数方程选做题)在极坐标系中,直线θ=
π
6
(ρ∈R)
截圆ρ=2cos(θ-
π
6
)
的弦长是
2
2

②(不等式选做题)关于x的不等式|x-a|-|x-1|≤1在R上恒成立(a为常数),则实数a的取值范围是
[0,2]
[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)A.[选修4-1:几何证明选讲]
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.
求证:∠E=∠C.
B.[选修4-2:矩阵与变换]
已知矩阵A的逆矩阵A-1=
-
1
4
3
4
1
2
-
1
2
,求矩阵A的特征值.
C.[选修4-4:坐标系与参数方程]
在极坐标中,已知圆C经过点P(
2
π
4
),圆心为直线ρsin(θ-
π
3
)=-
3
2
与极轴的交点,求圆C的极坐标方程.
D.[选修4-5:不等式选讲]
已知实数x,y满足:|x+y|<
1
3
,|2x-y|<
1
6
,求证:|y|<
5
18

查看答案和解析>>

同步练习册答案