精英家教网 > 高中数学 > 题目详情
选修4-4 参数方程与极坐标
在平面直角坐标系xOy中,动圆x2+y2-8xcosθ-6ysinθ+7cos2θ+8=0(θ∈R)的圆心为P(x,y),求2x-y的取值范围.
【答案】分析:先将圆的一般式方程转化成圆的标准方程,从而求出圆心的参数方程,利用参数方程将2x+y表示成8cosθ-3sinθ,然后利用辅助角公式求出8cosθ-3sinθ的取值范围即可
解答:解:将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1
由题设得(θ为参数,θ∈R).
所以
所以 
点评:本题主要考查了圆的方程,以及三角函数模型的应用问题和辅助角公式的应用,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•邯郸一模)选修4-4:坐标系与参数方程
已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合.直线l的参数方程为:
x=-1+
3
2
t
y=
1
2
t       
(t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(Ⅰ)写出C的直角坐标方程,并指出C是什么曲线;
(Ⅱ)设直线l与曲线C相交于P、Q两点,求|PQ|值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系xOy的原点,极轴为z轴的正半轴,两种坐标系的长度单位相同,己知圆C1的极坐标方程为p=4(cosθ+sinθ,P是C1上一动点,点Q在射线OP上且满足OQ=
1
2
OP,点Q的轨迹为C2
(I)求曲线C2的极坐标方程,并化为直角坐标方程;
( II)已知直线l的参数方程为
x=2+tcosφ
y=tsinφ
(t为参数,0≤φ<π),l与曲线C2有且只有一个公共点,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选考题部分
(1)(选修4-4 参数方程与极坐标)(本小题满分7分)
在极坐标系中,过曲线L:ρsin2θ=2acosθ(a>0)外的一点A(2
5
,π+θ)
(其中tanθ=2,θ为锐角)作平行于θ=
π
4
(ρ∈R)
的直线l与曲线分别交于B,C.
(Ⅰ) 写出曲线L和直线l的普通方程(以极点为原点,极轴为x轴的正半轴建系);
(Ⅱ)若|AB|,|BC|,|AC|成等比数列,求a的值.
(2)(选修4-5 不等式证明选讲)(本小题满分7分)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ) 求证:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4坐标系与参数方程)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
3
)=6
.则直线与曲线C的位置关系为
相离
相离

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省漳州市四地七校高三第四次联考理科数学试卷(解析版) 题型:解答题

(选修4—4 参数方程与极坐标)(本题满分7分)

在极坐标系下,已知圆O:和直线

(Ⅰ)求圆O和直线的直角坐标方程;

(Ⅱ)当时,求直线与圆O公共点的一个极坐标.

 

查看答案和解析>>

同步练习册答案