精英家教网 > 高中数学 > 题目详情

函数的最小正周期为,其图像经过点

(1)求的解析式;

(2)若为锐角,求的值.

 

【答案】

(1);(2).

【解析】

试题分析:本题考查三角函数的性质,主要考查三角函数的周期、两角和与差的三角函数、倍角公式等基础知识,考查运算能力,考查数型结合思想.第一问,先利用周期求出,再利用点的坐标求出,注意已知条件中的取值范围;第二问,先利用两角和与差的三角函数公式展开化简表达式,得到,然后求,但是注意的正负符号.

试题解析: (1)∵的最小正周期为,∴

的图象经过点,即

(2),∴

整理得,又为锐角, ∴.

考点:1.三角函数的周期;2.三角函数的对称轴;3.三角函数值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=sin4x+cos4x(x∈R),则函数的最小正周期为(  )
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞二模)已知函数y=sinx+cosx,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(-πx-3),则函数的最小正周期为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•眉山二模)将函数y=cos(x+
π
3
)
的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移
π
6
个单位,所得函数的最小正周期为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤
π
2
)的图象与y轴相交于点M(0,
3
),且该函数的最小正周期为π.
(1)求θ和ω的值;
(2)已知点A(
π
2
,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=
3
2
,x0∈[
π
2
,π]时,求x0的值.

查看答案和解析>>

同步练习册答案