精英家教网 > 高中数学 > 题目详情
从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每个面恰染一种颜色,每两个具有公共棱的面染成不同的颜色.则不同的染色方法共有    种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.)
【答案】分析:由题意,至少3种颜色,再分四种情况,分别求解,利用分类计数原理,可得结论.
解答:解:由题意,至少3种颜色:
6种颜色全用:上面固定用某色,下面可有5种选择,其余4面有(4-1)!=6种方法,共计30种方法;
用5种颜色:上下用同色:6种方法,选4色:(4-1)!=30;6×30÷2=90种方法;.
用4种颜色:=90种方法.
用3种颜色:=20种方法.
∴共有230种方法
故答案为:230.
点评:本题考查组合知识,考查分类计数原理,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每个面恰染一种颜色,每两个具有公共棱的面染成不同的颜色.则不同的染色方法共有
230
230
种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每个面恰染一种颜色,每两个具有公共棱的面染成不同的颜色.则不同的染色方法共有________种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每个面恰染一种颜色,每两个具有公共棱的面染成不同的颜色.则不同的染色方法共有______种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同.)

查看答案和解析>>

同步练习册答案