精英家教网 > 高中数学 > 题目详情
在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.
(Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
分析:(I)利用线面垂直的判定定理,证明AC⊥平面BB1D1D,即可得到AC⊥D1E;
(Ⅱ)建立空间直角坐标系,确定面AD1E的法向量,利用向量的夹角公式,即可求DE与平面AD1E所成角的正弦值;
(Ⅲ)利用BP∥平面AD1E,可得
BP
n
,利用向量的数量积公式,可得结论.
解答:(Ⅰ)证明:连接BD
∵ABCD-A1B1C1D1是长方体,∴D1D⊥平面ABCD,
又AC?平面ABCD,∴D1D⊥AC…1分
在长方形ABCD中,AB=BC,∴BD⊥AC…2分
又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分
而D1E?平面BB1D1D,∴AC⊥D1E…4分
(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),
AE
=(0,1,1),
AD1
=(-1,0,2),
DE
=(1,1,1)
…5分
设平面AD1E的法向量为
n
=(x,y,z)
,则
n
AD1
=0
n
AE
=0
,即
-x+2z=0
y+z=0

令z=1,则
n
=(2,-1,1)
…7分     
cos<
n
DE
>=
n
DE
|
n
|•|
DE
|
=
2-1+1
3
×
6
=
2
3
…8分
∴DE与平面AD1E所成角的正弦值为
2
3
…9分
(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.
设P的坐标为(t,0,0)(0≤t≤1),则
BP
=(t-1,-1,0)

∵BP∥平面AD1E
BP
n
,即
BP
n
=0

∴2(t-1)+1=0,解得t=
1
2
,…12分
∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长
1
2
.…13分.
点评:本题考查线面垂直,考查线面角,考查线面平行,考查向量知识的运用,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案