精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的前n项和为Sn,a1=2,S1,2S2,3S3成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn-an}是首项为-6,公差为2的等差数列,求数列{bn}的前n项和.
分析:(1)利用S1,2S2,3S3成等差数列,确定数列的公比,即可求得数列的通项;
(2)确定数列{bn}的通项,利用分组求和,可求数列{bn}的前n项和.
解答:解:(1)设等比数列{an}的公比为q,
∵S1,2S2,3S3成等差数列,
∴4S2=S1+3S3
∵a1=2,
∴4(2+2q)=2+6(1+q+q2),即3q2-q=0,解得q=0(舍去)或q=
1
3

an=2•(
1
3
)n-1

(2)由题意得bn-an=2n-8,所以bn=2•(
1
3
)
n-1
+2n-8.
设数列{bn}的前n项和为Tn,则Tn=
2[2-(
1
3
)n]
1-
1
3
+
n(-6+2n-8)
2
=n2-n+3-(
1
3
)
n-1
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案