精英家教网 > 高中数学 > 题目详情
函数f(x)=x2-bx+c,满足对于任何x∈R都有f(x)=f(2-x),且f(0)=3.则f(bx)与f(cx)的大小关系是   
【答案】分析:由对于任何x∈R都有f(x)=f(2-x)推出函数关于直线x=1对称,求出b,f(0)=3推出c的值,x≥0,x<0确定f(bx)和f(cx)的大小.
解答:解:若对于任何x∈R都有f(x)=f(2-x),
则函数的图象关于x=1对称
=1
∴b=2
又∵f(0)=3.
∴c=3
∴f(x)=x2-2x+3
∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.
若x>0,则3x>2x>1,
∴f(3x)>f(2x).
若x=0,则3x=2x=1,
∴f(3x)=f(2x).
若x<0,则3x<2x<1,
∴f(3x)>f(2x).
∴f(3x)≥f(2x).
故答案为:f(3x)≥f(2x
点评:本题是基础题,考查学生分析问题解决问题的能力,基本知识掌握的熟练程度,利用指数函数、二次函数的性质解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案