精英家教网 > 高中数学 > 题目详情

数列满足 .

用数学归纳法证明: 

证明略


解析:

(1)①当n=2时,,不等式成立.

②假设当n=k时不等式成立,即 (

那么.

这就是说,当n=k+1时不等式成立.根据①②可知:对所有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)设数列{an}的前n项和为Sn,且满足2an-Sn=1,  n∈N*
(1)求数列{an}的通项公式;
(2)在数列{an}的每两项之间都按照如下规则插入一些数后,构成新数列{bn},在an和an+1两项之间插入n个数,使这n+2个数构成等差数列,求b2012的值;
(3)对于(2)中的数列{bn},若bm=an,并求b1+b2+b3+…+bm(用n表示).

查看答案和解析>>

科目:高中数学 来源:2010年安徽省安庆一中高三第三次模拟考试数学(理)试题 题型:解答题

(本题满分 13分)
集合为集合个不同的子集,对于任意不大于的正整数满足下列条件:
,且每一个少含有三个元素;
的充要条件是(其中)。
为了表示这些子集,作列的数表(即数表),规定第行第列数为:
(1)该表中每一列至少有多少个1;若集合,请完成下面数表(填符合题意的一种即可);

(2)用含的代数式表示数表中1的个数,并证明
(3)设数列项和为,数列的通项公式为:,证明不等式:对任何正整数都成立。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南郑州盛同学校高三4月模拟考试理科数学试卷(解析版) 题型:解答题

设数列的前项和为,且满足

(1)求数列的通项公式;

(2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值;

(3)对于(2)中的数列,若,并求(用表示).

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省、鹰潭一中高三4月联考理科数学试卷(解析版) 题型:解答题

设数列的前项和为,且满足

(1)求数列的通项公式;

(2)在数列的每两项之间都按照如下规则插入一些数后,构成新数列,在两项之间插入个数,使这个数构成等差数列,求的值;

(3)对于(2)中的数列,若,并求(用表示).

 

查看答案和解析>>

同步练习册答案