精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2-4x+1,x∈[-1,0].

(1)求f-1(x);

(2)作出y=f(x)和y=f-1(x)的图象,并判断其单调性;

(3)解不等式:f-1(7x)<f-1(x+1).

解:(1)设y=2x2-4x+1=2(x-1)2-1,

∴2(x-1)2=y+1.

∵x∈[-1,0],∴x-1∈[-2,-1].

∴x-1=-.

∴f-1(x)=1-,x∈[1,7].

(2)y=f(x)和y=f-1(x)的图象见图.

∵y=f(x)在[-1,0]上是减函数,

∴y=f-1(x)在[1,7]上是减函数.

(3)由(2)知y=f-1(x)在[1,7]上是减函数,

∵f-1(7x)<f-1(x+1),

∴7≥7x>x+1≥1.解得<x≤1,

即原不等式的解集为{x|<x≤1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案