精英家教网 > 高中数学 > 题目详情
(2012•淄博一模)如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.
(I)求证:直线SA∥平面BDE;
(II)求直线BD与平面SBC所成角的正弦值.
分析:(I)连接EO,由题设条件推导出EO是△ASC的中位线,由此能够证明直线SA∥平面BDE.
(II)过点O作CB的平行线作x轴,过O作AB的平行线作y轴,以OS为z轴,建立空间直角坐标系,利用向量法能够求出直线BD与平面SBC所成角的正弦值.
解答:解:(I)如图,连接EO,
∵四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,
∴O是AC的中点,
∵E是侧棱SC的中点,
∴EO是△ASC的中位线,
∴EO∥SA,
∵SA?面ASC,EO不包含于面ASC,
∴直线SA∥平面BDE.
(II)过点O作CB的平行线作x轴,过O作AB的平行线作y轴,以OS为z轴,建立如图所示的空间直角坐标系,
∵四棱锥S-ABCD中,底面ABCD是边长为4的正方形,
O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,
异面直线SA和BC所成角的大小是60°,
∴SA=4,SO=2
2

∴B(2,2,0),C(-2,2,0),S(0,0,2
2
),D(-2,-2,0),
SB
=(2,2,-2
2
)
SC
=(-2,2,-2
2
)
BD
=(-4,-4,0)

设面SBC的法向量为
n
=(x,y,z)

SB
n
=0
SC
n
=0

2x+2y-2
2
z=0
-2x+2y-2
2
z=0

n
=(0,
2
,1)

设直线BD与平面SBC所成角为θ,
则sinθ=|cos<
BD
n
>|=|
-4
2
4
2
3
|=
3
3
点评:本题考查直线与平面平行的证明,考查直线与平面所成角的正弦值的求法.解题时要认真审题,仔细解答,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淄博一模)在△ABC中,已知b•cosC+c•cosB=3a•cosB,其中a、b、c分别为角A、B、C的对边.则cosB值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(I)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)已知函数f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若a为第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1+cos2a-sin2a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)已知不等式x2-x≤0的解集为M,且集合N={x|-1<x<1},则M∩N为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博一模)设方程log4x-(
1
4
x=0、log 
1
4
x-(
1
4
x=0的根分别为x1、x2,则(  )

查看答案和解析>>

同步练习册答案