【题目】已知函数f(x)=
sin(x+
)﹣
cos(x+
),若存在x1 , x2 , x3 , …,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…
,则n的最小值为( )
A.6
B.10
C.8
D.12
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC=
CP=2,D是CP中点,将△PAD沿AD折起,使得PD⊥面ABCD;![]()
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中点.求三棱锥A﹣PEB的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某社区居民购买水果和牛奶的年支出费用与购买食品的年支出费用的关系,随机调查了该社区5户家庭,得到如下统计数据表:
购买食品的年支出费用x(万元) | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
购买水果和牛奶的年支出费用y(万元) | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根据上表可得回归直线方程
,其中
,据此估计,该社区一户购买食品的年支出费用为3.00万元的家庭购买水果和牛奶的年支出费用约为( )
A.1.79万元
B.2.55万元
C.1.91万元
D.1.94万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰好有一个元素,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是数列
的前n项和,
,且
.
(1)求数列
的通项公式;
(2)对于正整数
,已知
成等差数列,求正整数
的值;
(3)设数列
前n项和是
,且满足:对任意的正整数n,都有等式
成立.求满足等式
的所有正整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的顶点坐标为
,
,
, 点P的横坐标为14,且
,点
是边
上一点,且
.
(1)求实数
的值及点
、
的坐标;
(2)若
为线段
(含端点)上的一个动点,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰好有一个元素,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com