精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)以为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为,(),直线与曲线交于两点,求线段的长度.

【答案】(1));(2.

【解析】

1)根据参数方程,消去参数,得到曲线普通方程,再由题意求出定义域即可;

2)先将(1)中的曲线方程化为极坐标方程,得到,(),设的极坐标分别为,将代入曲线的极坐标方程,由根与系数关系,以及,即可得出结果.

1)曲线的参数方程为为参数),

将①式两边平方,得③,

②,得,即

因为,当且仅当

时取

所以,即

所以曲线的普通方程为.

2)因为曲线的直角坐标系方程为),

所以把代入得:,(),

则曲线的极坐标方程为,(

的极坐标分别为,由

,即,且

因为

满足,不妨设

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阿波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.①若定点为,写出的一个阿波罗尼斯圆的标准方程__________;②△中,,则当△面积的最大值为时,______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).

(Ⅰ) 求函数f(x)的表达式;

(Ⅱ) 证明:a>3,关于x的方程f(x)= f(a)有三个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直四棱柱中,底面是边长为6的正方形,点在线段上,且满足,过点作直四棱柱外接球的截面,所得的截面面积的最大值与最小值之差为,则直四棱柱外接球的半径为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,大摆锤是一种大型游乐设备,常见于各大游乐园.游客坐在圆形的座舱中,面向外.通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险.座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.今年五一,小明去某游乐园玩大摆锤,他坐在点A处,大摆锤启动后,主轴在平面内绕点O左右摆动,平面与水平地面垂直,摆动的过程中,点A在平面内绕点B作圆周运动,并且始终保持.已知,在大摆锤启动后,给出下列结论:

①点A在某个定球面上运动;

②线段在水平地面上的正投影的长度为定值;

③直线与平面所成角的正弦值的最大值为

与水平地面所成角记为,直线与水平地面所成角记为,当时,为定值.

其中正确结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段AB的中点为,且AB两点到抛物线的焦点F的距离之和为8.


1)求抛物线的标准方程;

2)若线段AB的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若a=1,且f(x)≥m(0+∞)恒成立,求实数m的取值范围;

2)当时,若x=0不是f(x)的极值点,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一副扑克牌有52张(不包括大小王),求:

1)任取1张是红桃的概率;

2)任取2张是同花色的概率;

3)任取3张,至少有2张是同花色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线

1)求直线和曲线的直角坐标方程;

2)直线轴交于点,与曲线相交于两点,求的值.

查看答案和解析>>

同步练习册答案