(本题满分12分)设椭圆
:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(1)求椭圆
的离心率; (2)若过
、
、
三点的圆恰好与直线
:
相切,
求椭圆
的方程;
科目:高中数学 来源: 题型:解答题
已知圆O:
和定点A(2,1),由圆O外一点
向圆O引切线PQ,切点为Q,且满足![]()
![]()
(1) 求实数a、b间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图所示,椭圆C:
的离心率
,左焦点为
右焦点为
,短轴两个端点为
.与
轴不垂直的直线
与椭圆C交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.![]()
(1)求椭圆
的方程;
(2)求证直线
与
轴相交于定点,并求出定点坐标.
(3)当弦
的中点
落在
内(包括边界)时,求直线
的斜率的取值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知椭圆
的焦点在
轴上,离心率为
,对称轴为坐标轴,且经过点
.
(I)求椭圆
的方程;
(II)直线
与椭圆
相交于
、
两点,
为原点,在
、
上分别存在异于
点的点
、
,使得
在以
为直径的圆外,求直线斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设
、
分别是圆
和椭圆
的弦,且弦的端点在
轴的异侧,端点
与
、
与
的横坐标分别相等,纵坐标分别同号.![]()
(Ⅰ)若弦
所在直线斜率为
,且弦
的中点的横坐标为
,求直线
的方程;
(Ⅱ)若弦
过定点
,试探究弦
是否也必过某个定点. 若有,请证明;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(10分)过直角坐标平面
中的抛物线
,直线
过焦点
且与抛物线相交于
,
两点.
⑴当直线的倾斜角为
时,用
表示
的长度;
⑵当
且三角形
的面积为4时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知椭圆
的离心率
,A,B
分别为椭圆的长轴和短轴的端点,
为AB的中点,O为坐标原点,且
.
(1)求椭圆的方程;
(2)过(-1,0)的直线
交椭圆于P,Q两点,求△POQ面积最大时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,设
是圆
上的动点,点D是
在
轴上的投影,M为
D上一点,且![]()
(Ⅰ)当
的在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为
的直线被C所截线段的长度。![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com