(.(本题满分12分)
已知二次函数
和“伪二次函数”
(
、
、![]()
),
(I)证明:只要
,无论
取何值,函数
在定义域内不可能总为增函数;
(II)在二次函数
图象上任意取不同两点
,线段
中点的横坐标为
,记直线
的斜率为
,
(i)求证:
;
(ii)对于“伪二次函数”
,是否有(i)同样的性质?证明你的结论.
解:(I)如果
为增函数,
则
(1)恒成立,
当
时恒成立,
(2)
由二次函数的性质, (2)不可能恒成立.
则函数
不可能总为增函数. --------3分
(II)(i)
=
.
由![]()
, 则
--------5分
![]()
=
,
(3) --------7分
由(ⅰ)中(1)
,如果有(ⅰ)的性质,则
, (4)
比较(3)( 4)两式得
,![]()
即:
,(4) --------10分
不妨令![]()
, (5)
设
,则
,
∴
在
上递增, ∴
.
∴ (5)式不可能成立,(4)式不可能成立,
.
∴“伪二次函数”
不具有(ⅰ)的性质. -------12分
【解析】略
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com