【题目】在平面直角坐标系
中,已知椭圆E:
(
)过点
,其心率等于
.
(1)求椭圆E的标准方程;
(2)若A,B分别是椭圆E的左,右顶点,动点M满足
,且
椭圆E于点P.
①求证:
为定值:
②设
与以
为直径的圆的另一交点为Q,求证:直线
经过定点.
科目:高中数学 来源: 题型:
【题目】已知函数
,
,
.
(1)当
时,求函数
的单调区间;
(2)若函数
在区间
上的最小值是
,求
的值;
(3)设
是函数
图象上任意不同的两点,线段
的中点为
,直线
的斜率为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
温度 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 26 | 32 | 26 | 16 |
(1)求余下的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是第2、3、4天的数据,求
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?
(参考公式;线性回归方程
中系数计算公式:![]()
,
,其中
、
表示样本的平均值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若函数
为偶函数,求实数
的值;
(2)若
,
,且函数
在
上是单调函数,求实数
的值;
(3)若
,若当
时,总有
,使得
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个结论:
①过点
,在两轴上的截距相等的直线方程是
;
②若
是等差数列
的前n项和,则
;
③在
中,若
,则
是等腰三角形;
④已知
,
,且
,则
的最大值是2.
其中正确的结论是________(写出所有正确结论的番号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数
(万人)与年份
的数据:
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数 | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
![]()
该景点为了预测2021年的旅游人数,建立了
与
的两个回归模型:
模型①:由最小二乘法公式求得
与
的线性回归方程
;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线
的附近.
(1)根据表中数据,求模型②的回归方程
.(
精确到个位,
精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
| 30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为
.②刻画回归效果的相关指数
;③参考数据:
,
.
|
|
|
|
|
|
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com