科目:高中数学 来源: 题型:
| y2 |
| b2 |
| PP1 |
| PP2 |
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江西省联盟高三第一次联考数学文卷 题型:解答题
本小题满分14分)
已知椭圆
的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且
的最小值不小于
。
(1)证明:椭圆上的点到F2的最短距离为
;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与
轴的右交点为Q,过点Q作斜率为
的直线
与椭圆相交于A、B两点,若OA⊥OB,求直线
被圆F2截得的弦长S的最大值。
查看答案和解析>>
科目:高中数学 来源:2011-2012年山东省济宁市高二上学期期中考试理科数学 题型:解答题
. (满分12分)
矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:
.
若点
在直线AD上.
(1)求点A的坐标及矩形ABCD外接圆的方程;
(2)过直线
上一点P作(1)中所求圆的切线,设切点为E、F,求四边形PEMF面积的最小值,并求此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)
已知椭圆
的左、右焦点分别为F1、F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且
的最小值不小于
。
(1)证明:椭圆上的点到F2的最短距离为
;
(2)求椭圆的离心率e的取值范围;
(3)设椭圆的短半轴长为1,圆F2与
轴的右交点为Q,过点Q作斜率为
的直线
与椭圆相交于A、B两点,若OA⊥OB,求直线
被圆F2截得的弦长S的最大值。
查看答案和解析>>
科目:高中数学 来源:2012年上海市徐汇区高三4月学习能力诊断数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com