【题目】如图是放置在桌面的某三棱柱的三视图,其中网格小正方形边长为1.若三棱柱表面上的
、
两点在三视图中的对应点为
、
,现一只蚂蚁要沿该三棱柱的表面(不包括下底面)从
爬到
,则所有路径里最短路径的长度为( )
![]()
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,左右焦点分别为
和
,且椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过椭圆的右顶点
作两条相互垂直的直线
,
,分别与椭圆交于点
(均异于点
),求证:直线
过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自小正方形的概率为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴,建立极坐标系,已知曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)设点
,直线
与曲线
交于不同的两点
、
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医药公司研发一种新的保健产品,从一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:
![]()
(Ⅰ)求
,并试估计这200盒产品的该项指标的平均值;
(Ⅱ)① 用样本估计总体,由频率分布直方图认为产品的质量指标值
服从正态分布
,计算该批产品指标值落在
上的概率;参考数据:附:若
,则
,
.
②国家有关部门规定每盒产品该项指标不低150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中
为优良,不高于180为合格,不低于220为优秀,在①的条件下,设公司生产该产品1万盒的成本为15万元,市场上每盒该产品的等级售价(单位:元)如图表,求该公司每万盒的平均利润.
等级 | 合格 | 优良 | 优秀 |
价格 | 10 | 20 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )
![]()
A.甲的数据分析素养优于乙B.乙的数据分析素养优于数学建模素养
C.甲的六大素养整体水平优于乙D.甲的六大素养中数学运算最强
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(
为参数),
,曲线
的极坐标方程为
.
(1)求直线
的普通方程及曲线
的直角坐标方程;
(2)若直线
与曲线
交于
、
两点,设
、
中点为
,求弦长
以及
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com