精英家教网 > 高中数学 > 题目详情
椭圆C:+=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
【答案】分析:(1)由F1、F2、B1、B2四点共圆,得出b=c,进而得到a2=b2+c2=2b2,再设椭圆的方程(含参数b),设H(x,y)为椭圆上一点,化简点(0,3)到椭圆上的点的距离,利用其最大值,分类讨论求出参数b的值,即得椭圆的方程.
(2)设直线L的方程为y=kx+m,代入.由直线l与椭圆相交于不同的两点可得△>0即m2<32k2+16,要使A、B两点关于过点P、Q的直线对称,必须,利用方程的根与系数的关系代入得,从而可求k得范围
解答:解:(1)∵F1、F2、B1、B2四点共圆,
∴b=c,
∴a2=b2+c2=2b2
设椭圆的方程为,N(0,3)
设H(x,y)为椭圆上一点,则|HN|2=x2+(y-3)2=-(y+3)2+2b2+18,(-b≤y≤b),
①若0<b<3,|HN|2的最大值b2+6b+9=50得 (舍去),
②若b≥3,|HN|2的最大值2b2+18=50得b2=16,
∴所求的椭圆的方程为:
(2)设直线L的方程为y=kx+m,代入得(1+2k2)x2+4kmx+(2m2-32)=0.
由直线l与椭圆相交于不同的两点知△=(4km)2-4(1+2k2)(2m2-32)>0,
m2<32k2+16.②
要使A、B两点关于过点P、Q的直线对称,必须
设A(x1,y1)B(x2,y2),则

解得.③
由②、③得

∵k2>0,

或0
故当或0时,A、B两点关于过点P、Q的直线对称.
点评:本题主要考查了利用椭圆的性质求解椭圆的方程,直线与圆锥曲线的位置关系的综合应用,点关于直线的对称得性质的应用.椭圆的性质及其应用、函数最值的求法等,解题时要注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点P是(1)中所得椭圆上的动点,当P在何位置时,最大,说明理由,并求出最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西桂林市、崇左市、防城港市高考第一次联合模拟理科数学试卷(解析版) 题型:解答题

 如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F、F,A是椭圆C上的一点,AF⊥FF,O是坐标原点,OB垂直AF于B,且OF=3OB.

(Ⅰ)求椭圆C的离心率;

(Ⅱ)求t∈(0,b),使得命题“设圆x+y=t上任意点M(x,y)处的切线交椭圆C于Q、Q两点,那么OQ⊥OQ”成立.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省沈阳四校联合体高二上学期期中考试理科数学卷 题型:选择题

设F1、F2分别为椭圆C: =1(a>b>0)的左、右焦点.

(Ⅰ)若椭圆上的点A(1,)到点F1、F2的距离之和等于4,求椭圆C的方程;

(Ⅱ)设点是(Ⅰ)中所得椭圆C上的动点,求线段的中点的轨迹方程.

 

查看答案和解析>>

同步练习册答案