精英家教网 > 高中数学 > 题目详情

求由抛物线,直线轴所围成的平面图形的的面积

 

【答案】

8

把直线与抛物线的图象画在同一个坐标系中,找出围成封闭图形,然后把直线与抛物线解析式联立求出直线与抛物线的交点坐标,根据图形得到抛物线解析式减去直线解析式在-1到1上、1到3上的定积分即为阴影图形的面积,求出定积分的值即为所求的面积

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网求由抛物线y2=8x(y>0)与直线x+y-6=0及y=0所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

  求由抛物线与直线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

 (10分)求由抛物线与直线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题

求由抛物线与直线所围成图形的面积.

【解析】首先利用已知函数和抛物线作图,然后确定交点坐标,然后利用定积分表示出面积为,所以得到,由此得到结论为

解:设所求图形面积为,则

=.即所求图形面积为

 

查看答案和解析>>

同步练习册答案