【题目】已知函数
.
(1)若
在
上的最大值为
,求实数
的值;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设
,对任意给定的正实数
,曲线
上是否存在两点
、
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
【答案】(1)
(2)
(3)对任意给定的正实数
,曲线
上总存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上
【解析】
试题分析:(1)由
,得
,
令
,得
或
.
列表如下:
|
|
| 0 |
|
|
|
|
| 0 |
| 0 |
| |
|
|
| 极小值 |
| 极大值 |
|
∵
,
,
,
即最大值为
,
. 4分
(2)由
,得
.
,且等号不能同时取,
,
恒成立,即
.
令
,求导得,
,
当
时,
,从而
,
在
上为增函数,
,
. 8分
(3)由条件,
,
假设曲线
上存在两点
满足题意,则
只能在
轴两侧,
不妨设
,则
,且
.
![]()
是以
(
为坐标原点)为直角顶点的直角三角形,
,
, 10分
是否存在
等价于方程
在
且
时是否有解.
①若
时,方程
为
,化简得
,
此方程无解; 11分
②若
时,
方程为
,即
,
设
,则
,
显然,当
时,
,即
在
上为增函数,
的值域为
,即
,
当
时,方程
总有解.
对任意给定的正实数
,曲线
上总存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上. 14分
科目:高中数学 来源: 题型:
【题目】用二分法研究函数f(x)=x3+3x﹣1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈ ,第二次应计算的f(x)的值为f( ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.
![]()
(1)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(2)如图2按照打分区间
绘制的直方图中,求最高矩形的高;
(3)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1 , 则下列结论中不正确的是( )![]()
A.EH∥FG
B.四边形EFGH是矩形
C.Ω是棱柱
D.Ω是棱台
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;
②直线AM与BN是平行直线;
③直线BN与MB1是异面直线;
④直线AM与DD1是异面直线.
其中正确的结论为 (注:把你认为正确的结论的序号都填上).![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB,E,F,G,H分别为PC、PD、BC、PA的中点.
求证:(1)PA∥平面EFG;
(2)DH⊥平面EFG.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,分别是椭圆
的左、右焦点.
(1)若点
是第一象限内椭圆上的一点,
,求点
的坐标;
(2)设过定点
的直线
与椭圆交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形
的两条对角线相交于点
,
边所在的直线的方程为
,点
在边
所在的直线上.
(1)求边
所在直线的方程;
(2)求矩形
外接圆的方程;
(3)过点
的直线
被矩形
的外接圆截得的弦长为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点
,且圆心
在直线
上,又直线
与圆C交于P,Q两点.
(1)求圆C的方程;
(2)若
,求实数
的值;
(3)过点
作直线
,且
交圆C于M,N两点,求四边形
的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com