精英家教网 > 高中数学 > 题目详情

已知,若存在不同的实数使得,则的取值范围是       

 

【答案】

【解析】解:因为,若存在不同的实数使得,结合图像法可知,则的取值范围是

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+px2+qx的图象与x轴切于非原点的一点,且f(x)的一个极值为-4
(1)求p、q的值,并求出f(x)的单调区间;
(2)若关于x的方程f(x)=t有3个不同的实根,求t的取值范围;
(3)令g(x)=f′(ex)+x-(t+12)ex,是否存在实数M,使得t≤M时g(x)是单调递增函数.若存在,求出M的最大值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
e2x-e(ex+e-x)-x

(1)求函数f(x)的极值.(2)是否存在正整数a,使得方程f(x)=
f(-a)+f(a)
2
在区间[-a,a]上有三个不同的实根,若存在,试确定a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年吉林一中理)(12分) 已知函数

(Ⅰ)若求证,

(Ⅱ)是否存在实数,使方程有四个不同的实根?若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二“零诊”考试文科数学试卷(解析版) 题型:解答题

已知函数(其中a,b为实常数)。

(Ⅰ)讨论函数的单调区间:

(Ⅱ)当时,函数有三个不同的零点,证明:

(Ⅲ)若在区间上是减函数,设关于x的方程的两个非零实数根为。试问是否存在实数m,使得对任意满足条件的a及t恒成立?若存在,求m的取值范围;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案