精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-2ax+a2-1<0},B={x|
x+1ax-2
>1}
,命题P:2∈A,命题Q:1∈B,若复合命题“P或Q”为真命题,“P且Q”为假命题,求实数a的取值范围.
分析:由已知中集合A={x|x2-2ax+a2-1<0}={x|a-1<x<a+1},我们易求出命题P:2∈A为真时,参数a的取值范围,又由B={x|
x+1
ax-2
>1}
,我们易确定出命题Q:1∈B,为真时,参数a的取值范围,结合复合命题“P或Q”为真命题,“P且Q”为假命题,即命题P,Q有且只有一个是真命题,得到答案.
解答:解:A={x|x2-2ax+a2-1<0}={x|a-1<x<a+1},2∈A时a-1<2<a+1,则1<a<3,即命题P:1<a<3(4分)
由1∈{x|
x+1
ax-2
>1}
2
a-2
>1⇒2<a<4

即命题Q:2≤a≤4(4分)
由题意知命题P,Q有且只有一个是真命题,
∴1<a≤2或3≤a<4(4分)
点评:本题考查的知识点是一元二次不等式的解法,分式不等式的解法,元素与集合关系的判断,复合命题判断的真值表,其中根据元素与集合关系判断的方法,求出命题P和命题Q为真命题时,参数a的取值范围,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},则A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<1},B={x|x(x-2)≤0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x≥1},B={x|x>2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

同步练习册答案