精英家教网 > 高中数学 > 题目详情
(2007•河东区一模)设坐标原点为O,抛物线y2=4x与过抛物线焦点的直线l交于点A、B,则向量
OA
OB
的值为(  )
分析:求得抛物线y2=4x的焦点为F(1,0),设直线l的方程为 y-0=k(x-1),A(x1,y1)、B(x2,y2),把直线l的方程代入抛物线的方程,利用韦达定理求得x1•x2 和y1•y2 的值,从而求得向量
OA
OB
=x1•x2+y1•y2 的值.
解答:解:抛物线y2=4x的焦点为F(1,0),设直线l的方程为 y-0=k(x-1),A(x1,y1)、B(x2,y2),
把直线l的方程代入抛物线的方程可得 k2x2-(2k2+4)x+k2=0,
故有 x1•x2=1.
把直线l的方程代入抛物线的方程可得 ky2-4y-4k=0,
∴y1•y2=-4.
∴向量
OA
OB
=x1•x2+y1•y2=-3,
故选C.
点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,两个向量的数量积公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•河东区一模)已知F1,F2是双曲线
x2
2
-y2=1的左、右焦点,P、Q为右支上的两点,直线PQ过F2,则|PF1|+|QF1|-|PQ|的值为
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)在约束条件
0≤x≤2
0≤y≤2
y-x≥1
下,z=4-2x+y的最大值是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)函数 y=
x2+2
(x≤0)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)△ABC的内角满足sinA+cosA>0,tanA-sinA<0,则A的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)椭圆与双曲线
x2
5
-y2=1有共同的焦点,且一条准线的方程是x=3
6
,则此椭圆的方程为(  )

查看答案和解析>>

同步练习册答案