精英家教网 > 高中数学 > 题目详情
设过抛物线y2=2px(p>0)的焦点F的弦PQ,则以PQ为直径的圆与抛物线准线的位置关系是(  )
分析:设PQ的中点到准线的距离是d,利用抛物线的定义求得P,Q到准线的距离,再根据梯形中位线的关系可得到答案.
解答:解:设PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.
又M到准线的距离d是梯形的中位线,故有d=
|PF|+|QF|
2
=
|PQ|
2

即圆心M到准线的距离等于半径
|PQ|
2

所以圆与准线是相切.
故选B.
点评:本题主要考查抛物线的基本性质,考查抛物线的定义.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设p>0是一常数,过点Q(2p,0)的直线与抛物线y2=2px交于相异两点A、B,以线段AB为直经作圆H(H为圆心).试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区一模)F是抛物线y2=2px(p>0)的焦点,过焦点F且倾斜角为θ的直线交抛物线于A,B两点,设|AF|=a,|BF|=b,则:
①若θ=60°且a>b,则
a
b
的值为
3
3
;②a+b=
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
(用p和θ表示).

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

设A (x1 ,y1 ),B (x2 ,y2)为抛物线y2=2px(p>0)上位于x 轴两侧的两点.  
(1)若y1y2=-2p ,证明直线AB 恒过一个定点; 
(2)若p=2 ,∠AOB(O为坐标原点)为钝角,求直线AB 在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:2004年重庆市高考数学试卷(文科)(解析版) 题型:解答题

设p>0是一常数,过点Q(2p,0)的直线与抛物线y2=2px交于相异两点A、B,以线段AB为直经作圆H(H为圆心).试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程.

查看答案和解析>>

同步练习册答案