【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
)的最小正周期是π,若将其图象向右平移
个单位后得到的图象关于原点对称,则函数f(x)的图象( )
A.关于直线x=
对称
B.关于直线x=
对称
C.关于点(
,0)对称
D.关于点(
,0)对称
【答案】B
【解析】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<
)的最小正周期是π,
∴T=
=π,解得ω=2,
即f(x)=sin(2x+φ),
将其图象向右平移
个单位后得到y=sin[2(x﹣
)+φ]=sin(2x+φ﹣
),
若此时函数关于原点对称,
则φ﹣
=kπ,即φ=
+kπ,k∈Z,
∵|φ|<
,
∴当k=﹣1时,φ=-
.
即f(x)=sin(2x-
).
由2x-
=
,
解得x=
+
,k∈Z,
故当k=0时,函数的对称轴为x=
,
故选:B
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
科目:高中数学 来源: 题型:
【题目】某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,如表是在某单位得到的数据(人数):
(1)能否有90%以上的把握认为对这一问题的看法与性别有关?
赞同 | 反对 | 合计 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合计 | 16 | 9 | 25 |
(2)从赞同“男女延迟退休”16人中选出3人进行陈 述发言,求事件“男士和女士各至少有1人发言”的概率;
(3)若以这25人的样本数据来估计整个地区的总体数据,现从该地区(人数很多)任选5人,记赞同“男女延迟退休”的人数为X,求X的数学期望.
附:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的
五种商品有购买意向.已知该网民购买
两种商品的概率均为
,购买
两种商品的概率均为
,购买
种商品的概率为
.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量
表示该网民购买商品的种数,求
的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C的对边分别为a,b,c,且满足(2a﹣c)cosB=bcosC
(1)求角B的大小;
(2)若b=
,a+c=4,求△ABC的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)
在平面直角坐标系
中,已知椭圆
:
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆
的标准方程;
(2)已知点
,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
为自然对数底数.
(1)当
时,求函数
在点
处的切线方程;
(2)讨论函数
的单调性,并写出相应的单调区间;
(3)已知
,若函数
对任意
都成立,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点且
=λ
,若
≥
,则λ的取值范围是( )
A.[
,1]
B.[
,1]
C.[
,
]
D.[
,
]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com