精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(Ⅰ)求a2,a3
(Ⅱ)证明an=
3n-12
分析:(Ⅰ)由a1=1,an=3n-1+an-1(n≥2),当n=2时可求a2,n=3时求得a3
(Ⅱ)利用递推式构造an-an-1=3n-1,然后通过累加可求出an
解答:解:(Ⅰ)∵a1=1,
∴a2=3+1=4,
∴a3=32+4=13;

(Ⅱ)证明:由已知an-an-1=3n-1,n≥2
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=3n-1+3n-2+…+3+1=
3n-1
2
.n≥2
当n=1时,也满足上式.
所以an=
3n-1
2
点评:本题是个基础题,主要考查由递推式求数列的项和累加法求数列的通项,注意验证n=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案