精英家教网 > 高中数学 > 题目详情
三棱锥A-BCD中, E是BC的中点,AB=AD,BD⊥DC
(I)求证:AE⊥BD;
(II)若,且二面角A-BD-C为,求AD与面BCD所成角的正弦值。
解:(I)如图取BD的中点F,连EF,AF,
∵E为BC中点,F为BD中点,
∴FE∥DC.   
又BD⊥DC,∴BD⊥FE.  
∵AB=AD ∴BD⊥AF
又AF∩FE=F,AF,FE面AFE
∴BD⊥面AFE  AE面AFE
∵AE⊥BD,∴BD⊥FE
(II)由(I)知BD⊥AF,
∴∠AFE即为二面角A-BD-C的平面角   
∴∠AFE=60° ∵AB=AD==2,
∴△ABD为等腰直角三角形,故

 
 即∴AE2+FE2=1=AF2∴AE⊥FE
又由(1)知BD⊥AE且BD∩FE=F,BD面BDC,FE面BDC
∴AE⊥平面BDC
∴∠ADE就是AD与面BCD所成角 ,    
中,,∴.                    
AD与面BDC所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥A-BCD中,E、F、G、H分别是边AB、BC、CD、DA的中点.
(1)求证:四边形EFGH是平行四边形;
(2)若AC=BD,求证:四边形EFGH是菱形;
(3)当AC与BD满足什么条件时,四边形EFGH是正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥A-BCD中,E,F分别是AB,BC的中点,EF⊥DE,且BC=1,则点A到平面BCD的距离为
6
6
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,点E在BC上,且AE⊥AC.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求点B到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在三棱锥A-BCD中,M,N分别为AB,CD的中点 则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.
(1)求证:四边形MNPQ为平行四边形;
(2)试在直线AC上找一点F,使得MF⊥AD.

查看答案和解析>>

同步练习册答案