精英家教网 > 高中数学 > 题目详情
在一定面积的水域中养殖某种鱼类,每个网箱的产量p是网箱个数x的一次函数,即p(x)=kx+b(k≠0).如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨.由于该水域面积限制,最多只能放置10个网箱.
(Ⅰ)求p(x),并说明放置多少个网箱时,总产量Q达到最高,最高为多少?
(Ⅱ)若鱼的市场价为
14
万元/吨,养殖的总成本为5lnx+1万元,则应放置多少个网箱才能使总收益y最高?(注:不必求出y的最大值)
分析:(Ⅰ)设出一次函数,利用如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,求出函数解析式,即可求得总产量函数,再利用配方法,即可求得最大值;
(Ⅱ)确定总收益函数,求导函数,确定函数的单调性,从而可得函数的极值,即是最值;
解答:解:(Ⅰ)设p=kx+b,由已知得
16=4k+b
10=7k+b
,∴
k=-2
b=24

∴p=-2x+24
∴Q=px=(-2x+24)x=-2(x-6)2+72(x∈N+,x≤10)
∴当x=6时,f(x)最大
即放置6个网箱时,可使综产量达到最大,最高为72吨;
(Ⅱ)总收益y=(-2x2+24x)×
1
4
-(5lnx+1)=-
1
2
x2+6x-5lnx-1
(x∈N*,且x≤10)
y′=-x+6-
5
x
=
-x2+6x-5
x
=
-(x-1)(x-5)
5

令y'=0,解得x=1或x=5
当变化x时,可得y及y'的变化情况如下表:
x (1,5) 5 (5,10)
y' + 0 -
y 极大值
由表知,当x=5时,y取得极大值,也就是最大值.
∴放置5个网箱时,可使总收益y最高.
点评:本题考查导数知识的运用,考查函数模型的构建,解题的关键是建立函数模型,利用导数求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宁德模拟)在一定面积的水域中养殖某种鱼类,每个网箱的产量P是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为24吨;如果放置7个网箱,则每个网箱的产量为18吨,由于该水域面积限制,最多只能放置12个网箱.已知养殖总成本为50+2x万元.
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为1万元/吨,应放置多少个网箱才能使每个网箱的平均收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁德模拟)在一定面积的水域中养殖某种鱼类,每个网箱的产量P是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,由于该水域面积限制,最多只能放置10个网箱.
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为m万元/吨,养殖的总成本为5lnx+1万元.
(i)当m=0.25时,应放置多少个网箱才能使总收益y最大?
(ii)当m≥0.25时,求使得收益y最高的所有可能的x值组成的集合.

查看答案和解析>>

科目:高中数学 来源:2012年福建省宁德市高三毕业班质量检查数学试卷(理科)(解析版) 题型:解答题

在一定面积的水域中养殖某种鱼类,每个网箱的产量P是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为16吨;如果放置7个网箱,则每个网箱的产量为10吨,由于该水域面积限制,最多只能放置10个网箱.
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为m万元/吨,养殖的总成本为5lnx+1万元.
(i)当m=0.25时,应放置多少个网箱才能使总收益y最大?
(ii)当m≥0.25时,求使得收益y最高的所有可能的x值组成的集合.

查看答案和解析>>

科目:高中数学 来源:2012年福建省宁德市高三毕业班质量检查数学试卷(文科)(解析版) 题型:解答题

在一定面积的水域中养殖某种鱼类,每个网箱的产量P是网箱个数x的一次函数,如果放置4个网箱,则每个网箱的产量为24吨;如果放置7个网箱,则每个网箱的产量为18吨,由于该水域面积限制,最多只能放置12个网箱.已知养殖总成本为50+2x万元.
(1)试问放置多少个网箱时,总产量Q最高?
(2)若鱼的市场价为1万元/吨,应放置多少个网箱才能使每个网箱的平均收益最大?

查看答案和解析>>

同步练习册答案