精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的奇函数,对任意的x都有f(x+2)=f(x)成立,且当x∈(0,1)时f(x)=
2x4x+1

(1)判断f(x)在(0,1)上的单调性,并加以证明;
(2)求f(x)在[-1,1]上的解析式;
(3)当关于x的方程f(x)-1=2λ在[-1,1]上有实数解时,求实数λ的取值范围,
分析:(1)用定义法证明函数的单调性,作差,变形,判号,得出结论四步,
(2)利用奇函数的性质求解,其步骤是先设x∈(-1,0),则-x∈(0,1),求出f(-x),再利用奇函数的性质,得到 f(x)=-f(-x)求出x∈(-1,0),上的表达式,再由所给的恒等式求出自变量为-1,0,1时的函数值为零,用分段函数写出解析式.
(3)将λ表示为x的函数,单调性求f(x)在[-1,1]上值域,利用一次函数的单调性求出λ的取值范围.
解答:解:(1)f(x)在(0,1)上是减函数,证明如下
当x∈(0,1)时,f(x)=
2x
4x+1

设0<x1<x2<1,
则f(x1)-f(x2)=
2x 1
4x1+1
-
2x2
4x2+1
=
(2x2-2x1)(2x1+x2-1)  
4x1+1)(4x2+1)  

∵0<x1<x2<1,∴2x2-2x1>0,2 x1+x2-1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,1)上单调递减
(2)解:当x∈(-1,0)时,-x∈(0,1).
∵f(x)是奇函数,∴f(x)=-f(-x)=-
2x
4x+1

由f(0)=f(-0)=-f(0),且f(1)=-f(-1)=-f(-1+2)=-f(1),
得f(0)=f(1)=f(-1)=0.∴在区间[-1,1]上,有f(x)=
2x
4x+1
     x∈(0,1)
-
2 x
4 x+1
    x∈(-1,0)
0                 x∈{-1,0,1}

(3)解:f(x)-1=2λ在[-1,1]上有实数解,转化为λ=
1
2
f(x)-
1
2
由函数的单调性求出函数在[-1,1]的值域
即得,f(x)的值域为(-
1
2
,-
2
5
)∪(
2
5
1
2
)∪{0}
λ∈(-
3
4
,-
7
10
)∪(-
3
10
,-
1
4
)∪{-
1
2
}
点评:本题考查复杂函数的单调性证明以及利用函数的奇偶性求对称区间上的解析式,思路简单,运算变形较繁,是一道提高答题者耐心的好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案