(本题满分12分)
如图,已知四棱锥
中,底面
是直角梯形,
,
,
,
,
平面
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)若
是
的中点,求三棱锥
的体积.
(本小题满分12分)
【命题意图】本小题主要考查直线与直线、直线与平面的位置关系,以及几何体的体积等基础知识,考查空间想象能力、推理论证能力,考查了数形结合思想、化归转化思想、必然与或然思想;
【解析】证明:(Ⅰ)错误!未找到引用源。
,…………… 1分
又
平面
…………… 2分
平面
…………… 3分
∴
∥平面
…………… 4分
(Ⅱ)在直角梯形
中,过
作
于点
, ………… 5分
则四边形
为矩形,∴![]()
又
,∴
,
在
中,![]()
∴
,∴![]()
则
,![]()
∴
………… 7分
又
平面
,∴
………… 8分
![]()
∴
平面
…………… 9分
(Ⅲ)∵
是
中点,
∴
到面
的距离是
到面
距离的一半 …………… 10分
…………… 12分
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com