精英家教网 > 高中数学 > 题目详情
如图,面ABEF⊥面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BEAF,G、H分别是FA、FD的中点,
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C、D、E、F四点是否共面?为什么?
(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE。

解:(Ⅰ)由题设知,FG=GA,FH=HD,
所以GH
又BC
故GHBC,所以四边形BCHG是平行四边形。
(Ⅱ)C、D、F、E四点共面,理由如下:
由BE,G是FA的中点知,BEGF,所以EF∥BG,
由(Ⅰ)知BG∥GH,故FH共面,
又点D在直线FH上,
所以C、D、F、E四点共面。
(Ⅲ)连结EG,由AB=BE,BEAG及∠BAG=90°知ABEG是正方形,
故BG⊥EA,
由题设知,FA、AD、AB两两垂直,
故AD⊥平面FABE,
因此EA是ED在平面FABE内的射影,根据三垂线定理,BG⊥ED,
又ED∩EA=E,所以BG⊥平面ADE,
由(Ⅰ)知,CH∥BG,
所以CH⊥平面ADE,
由(Ⅱ)知F∈平面CDE,故CH平面CDE,
得平面ADE⊥平面CDE。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,面ABEF⊥面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
.
1
2
AD,BE
.
.
1
2
AF,G、H分别是FA、FD的中点.
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C、D、E、F四点是否共面?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,面ABEF⊥面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
.
1
2
AD,BE
.
.
1
2
AF,G、H分别是FA、FD的中点.
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C、D、E、F四点是否共面?为什么?
精英家教网

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,面ABEF⊥面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠BAF=90°,BCAD,BEAF.
(Ⅰ)求证:C、D、E、F四点共面;
(Ⅱ)若BA=BC=BE,求二面角A-ED-B的大小.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮复习巩固与练习:空间点、线、面之间的位置关系(解析版) 题型:解答题

如图,面ABEF⊥面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCAD,BEAF,G、H分别是FA、FD的中点.
(Ⅰ)证明:四边形BCHG是平行四边形;
(Ⅱ)C、D、E、F四点是否共面?为什么?

查看答案和解析>>

同步练习册答案