精英家教网 > 高中数学 > 题目详情
已知曲线C:
(1)曲线C经过点,求b的值;
(2)动点(x,y)在曲线C,求x2+2y的最大值;
(3)由曲线C的方程能否确定一个函数关系式y=f(x)?如能,写出解析式;如不能,再加什么条件就可使x、y间建立函数关系,并写出解析式.
【答案】分析:(1)由题意将点,代入求b的值即可;
(2)动点(x,y)在曲线C上,可把x2用y表示出来,将x2+2y表示成y的函数,此是一个关于y的二次函数,配方后对b的取值范围根据二次函数的性质进行讨论求最值即可;
(3)根据函数的定义判断即可,由于本题中可以出现一对二的对应,故不是函数,证明方法用函数的定义进行证明.
解答:解:(1)
(2)根据,∴


(3)不能,如再加条件xy<0就可使x、y之间建立函数关系,
解析式(不唯一,也可其它答案).
点评:本题考查函数与方程的给定运用,考查了与方程有关的解析式的最值的求法,将问题转化为二次函数的最值,这是与方程有关的问题经常采用的一个思路,本小题易出错,第三问对函数的定义的考查较简单.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:x2+
y2
a
=1
,直线l:kx-y-k=0,O为坐标原点.
(1)讨论曲线C所表示的轨迹形状;
(2)当a=-1时,直线l与曲线C相交于两点M,N,试问在曲线C上是否存在点Q,使得
OM
+
ON
OQ
?若存在,求实数λ的取值范围;若不存在,请说明理由;
(3)若直线l与x轴的交点为P,当a>0时,是否存在这样的以P为直角顶点的内接于曲线C的等腰直角三角形?若存在,求出共有几个?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:(x-1)2+y2=1,点A(-1,0)及点B(2,a),从点A观察点B,要使视线不被曲线C拦住,则a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面的对应点的轨迹是椭圆.
②若对任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,则数列{an}是等差数列或等比数列.
③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
④已知曲线C:
x2
9
-
y2
16
=1
和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
上述命题中错误的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:
x2
a2
+y2=1
(a>0),曲线C与x轴相交于A、B两点,直线l过点B且与x轴垂直,点S是直线l上异于点B的任意一点,线段SA与曲线C交于点T,线段TB与以线段SB为直径的圆相交于点M.
(I)若点T与点M重合,求
AT
AS
的值;
(II)若点O、M、S三点共线,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
y2
m
+x2=1;
(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P在
EF
上,且 
EP
=-
1
3
PF
.问:点P的轨迹可能是圆吗?请说明理由;
(2)如果直线l的斜率为
2
,且过点M(0,-2),直线l交曲线C于A,B两点,又
MA
MB
=-
9
2
,求曲线C的方程.

查看答案和解析>>

同步练习册答案